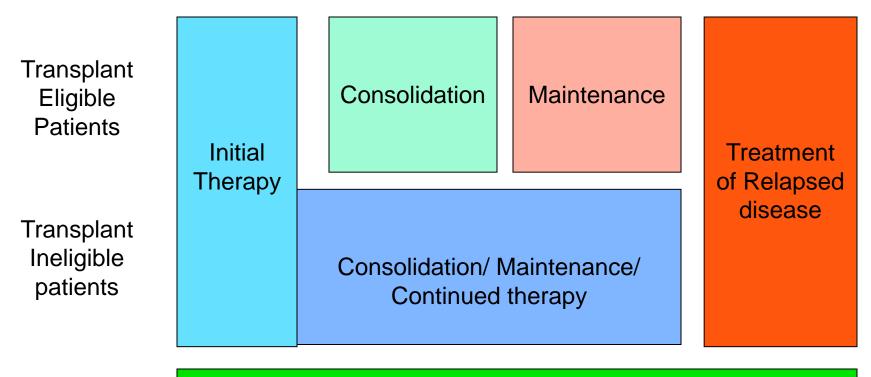


Chilean Society of Hematology

October 2014

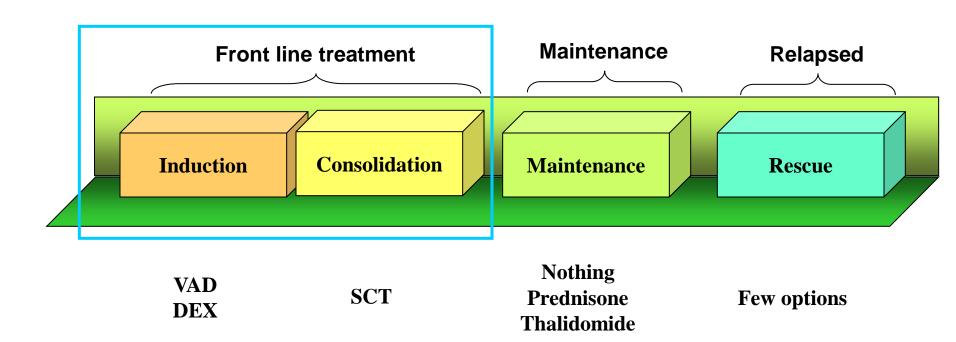
Scottsdale, Arizona

Rochester, Minnesota



Jacksonville, Florida

Joseph Mikhael, MD, MEd, FRCPC, FACP Staff Hematologist, Mayo Clinic Arizona


Managing myeloma: the components

Supportive Care

Treatment sequence

RELAPSE

- With prolonged survival in most patients with myeloma, relapse therapy is more important than ever
 - Approach must now take into account long term thinking
- Overall approach must be:
 - Evidence based
 - Rational
 - Individualized to patient
- I don't really believe in "standard second line" therapy
- A strategy to choose the best therapy needs to address multiple issues
- Ask yourself the following questions:

Question #1: Do I really need to treat this patient?

- Spectrum of MGUS, Asymptomatic (smoldering) MM and true MM
- Recall the importance of
 - Calcium
 - Renal insufficiency
 - Anemia
 - Bone Disease

 But for many patients, this may be too "late" – consider other factors...

Question #2: Are the Light Chains Elevated or Climbing?

- Light chains rising often heralds the relapse before clinically apparent
- Initiating therapy earlier when light chains are climbing may prevent renal injury
- Consider an absolute level of 100 (involved over uninvolved) to be reason to treat
- Also consider when 25% rise occurs twice

Question #3: Does the patient have High Risk Disease?

- Recall the importance of risk stratification in myeloma and its varied presentation
- Relapse occurs more quickly and aggressively in high risk patients
- Close monitoring and rapid institution of therapy is critical
- More likely require longer term (or even continuous) therapy
- Standard: fewer drugs at once, more likely sequential

Question #4: What did I use the last time?

- Depth of response
 - How rapidly and successfully did it work
 - CR, VGPR, PR, MR, SD
- Duration of Response
 - How long did it last?
- If depth and duration reasonable, consider retreating with same regimen – knowing it will be less effective

Question #5: How well tolerated was the previous therapy?

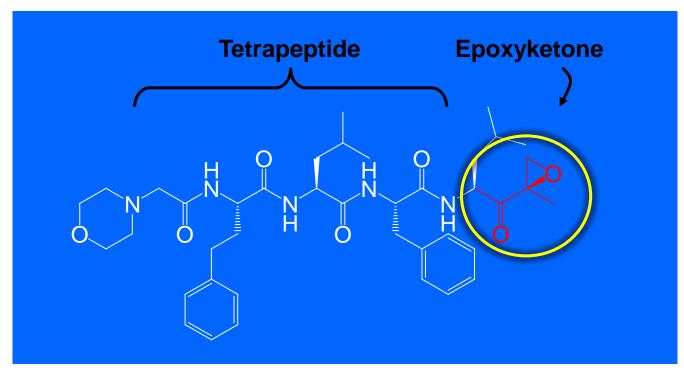
• Key areas of tolerability

- Neuropathy
- Cytopenias with sequelae
- Fatigue
- Other
- Did it lead to dose reductions or discontinuation?
- To what extent did it impair quality of life?

Question #6: Have I employed the Big Three?

- Thalidomide little cytopenias, ok in renal dz
 - Neuropathy, fatigue, thrombosis, constipation
- Bortezomib manageable cytopenias, ok in renal dz
 - Neuropathy, IV/SC route (weekly)
- Lenalidomide little neuropathy
 - Fatigue, may affect stem cell collection
 - Concern of MDS or SPM

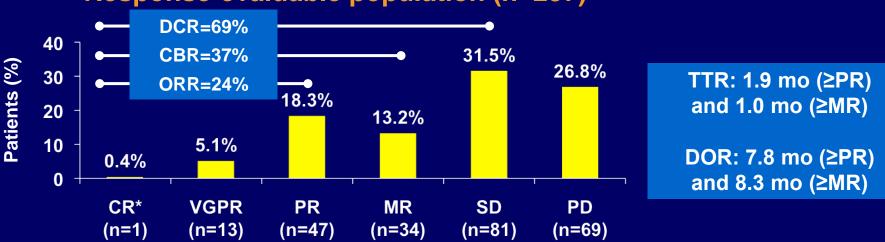
Question #7: Should I use carfilzomib or pomalidomide?


- Recently FDA approved agents for relapsed/refractory MM
- Highly active, well tolerated
- Carfilzomib is novel proteasome inhibitor with minimal neurotoxicity, effective even in bortezomib refractory disease
- Pomalidomide is novel immunomodulatory agent, oral and effective even in lenalidomide refractory disease

Carfilzomib: A Novel Agent Designed to Promote Selective and Sustained Proteasome Inhibition

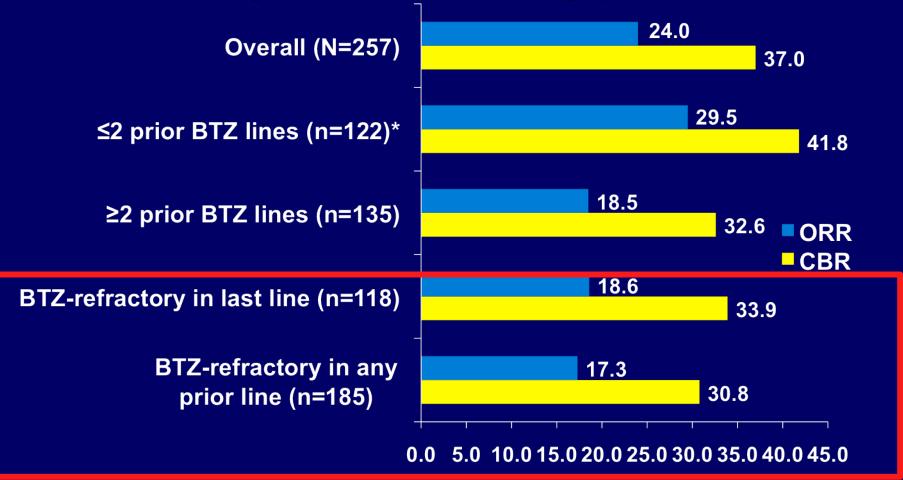
- Carfilzomib is a next-generation, selective proteasome inhibitor
 - Potent and sustained target suppression
 - Improved antitumor activity


MAYO CLINIC


• Minimal off-target activity with low neurotoxicity

Phase 2 study of single agent CFZ for R/R MM

- Population: ≥2 prior regimens, including BTZ, THAL or LEN; refractory to most recent therapy (median 5 prior therapies [range 1–20]; 99.6% prior BTZ; 94% prior LEN)
- Primary endpoint: overall response rate (ORR) (≥ partial response [PR])

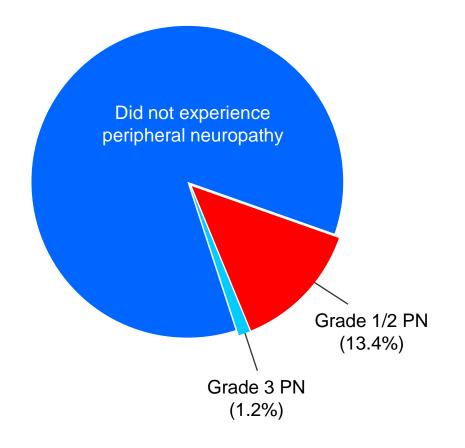

*Cycle 1 dosed at 20 mg/m², CFZ given at 27 mg/m² from Cycle 2 onwards. DEX 4 mg (PO/IV) administered before each CFZ dose in Cycle 1 and thereafter as required to prevent infusion reactions (non-therapeutic dose) CR, complete response; DOR, duration of response; MR, minimal response; PD, progressive disease; SD, stable disease; TTR, time to response; VGPR, very good partial response

Note: Carfilzomib is an investigational product and is not licensed in the EU

Siegel DS, et al. Blood 2012;120:2817–2825

003-A1 (Phase 2)

Phase 2 study of single agent CFZ for R/R MM: activity in BTZ-refractory patients


*1 patient did not receive prior BTZ **Note:** Carfilzomib is an investigational product and is not licensed in the EU

Siegel D, et al. Blood 2012;120:2817–2825; Siegel D, et al. J Clin Oncol 2011;29(Suppl);Abstract 8027 and poster presentation at ASCO 2011 Wang M, et al. Blood 2011;118:Abstract 3969 and poster presentation at ASH 2011

Neuropathy Was Infrequent and Not Dose Limiting Pooled data from single-agent studies (003 / 004 / 005)

- Peripheral neuropathy occurred infrequently across all single-agent studies*
 - Only 6 patients (1.2%) experienced a Grade 3 PN event
 - No Grade 4 PN events
- Only 1 patient had drug discontinued for PN (study 004; BTZ-treated arm)

*Includes the terms peripheral neuropathy, neuropathy, peripheral sensory neuropathy, peripheral motor neuropathy

Phase III ASPIRE Trial

Randomized 1:1

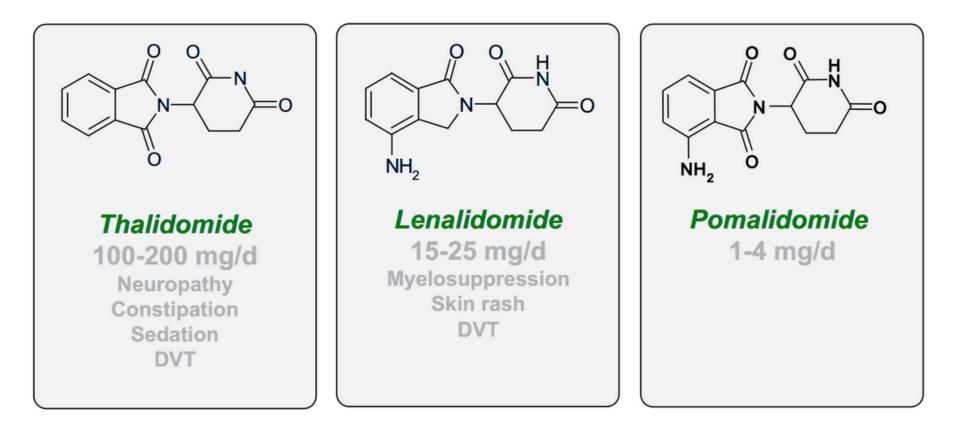
N = 700

Stratification

- Prior bortezomib
- Prior lenalidomide

• β₂m

- Carfilzomib 27 mg/m² IV Day 1, 2, 8, 9, 15, 16 (20 mg/m² on Days 1, 2 of Cycle 1)
- → Lenalidomide 25 mg PO Days 1–21
 - Dexamethasone 40 mg PO or IV on Days 1, 8, 15, 22

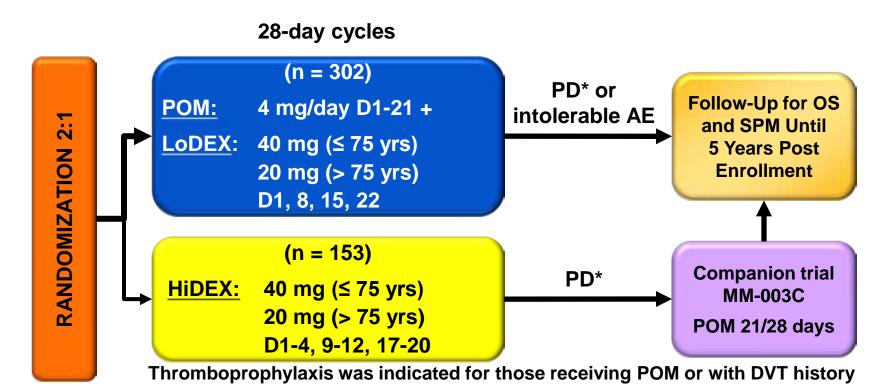

Cycle = 28 days

- Lenalidomide 25 mg Days 1–21
- Dexamethasone 40 mg PO or IV
- on Days 1, 8, 15, 22

Cycle = 28 days

Primary End Point: PFS

MAYO CLINIC Molecular Structure of Thalidomide, Lenalidomide and Pomalidomide


Structurally similar, but functionally different both qualitatively and quantitatively

Myeloma Pomalidomide Summary

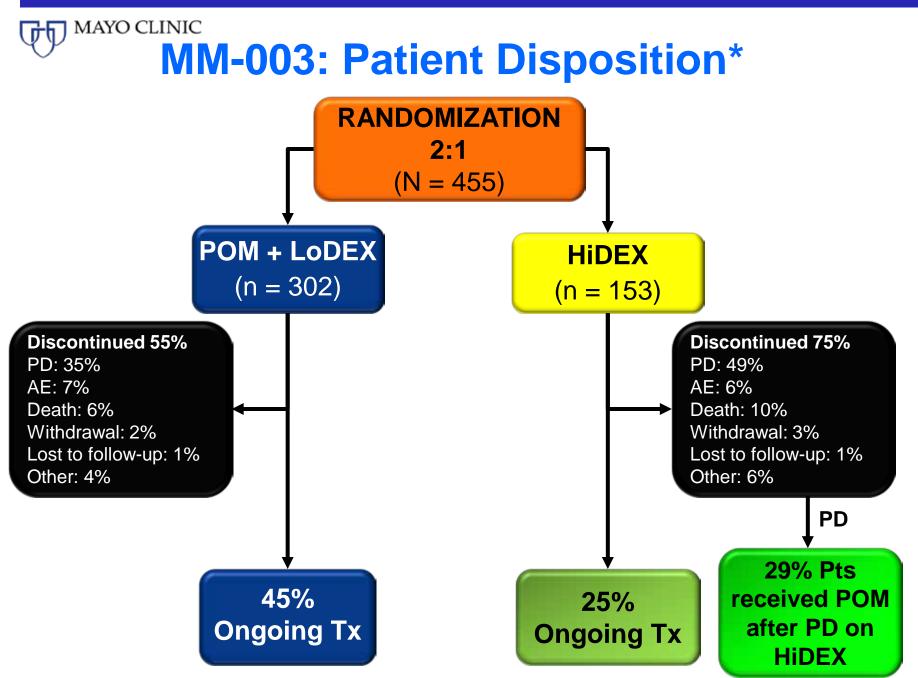
	Lacy Pom/Dex 1-3 reg	Lacy Pom/Dex Len ref	Richardson Pom+/- dex MM-002
³ PR	63%	32%	28%
³ MR	82%*	47%	52%
	Median 3 prior regimens		4-6 prior mens

MM-003 Design: POM + LoDEX vs HiDEX Refractory MM Pts Who Have <u>Failed</u> BORT and LEN

Stratification

•Age (≤ 75 vs > 75 yrs)

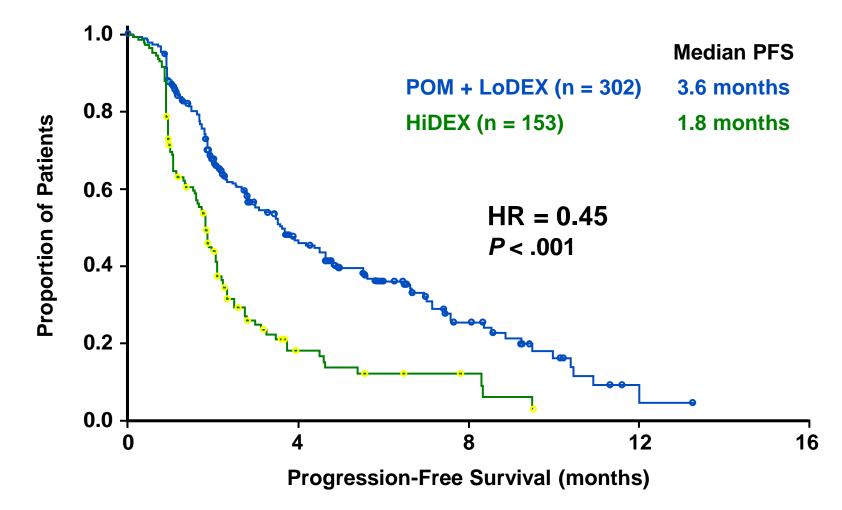
•Number of prior Tx (2 vs > 2)


Disease population

*Progression of disease was independently adjudicated in real-time

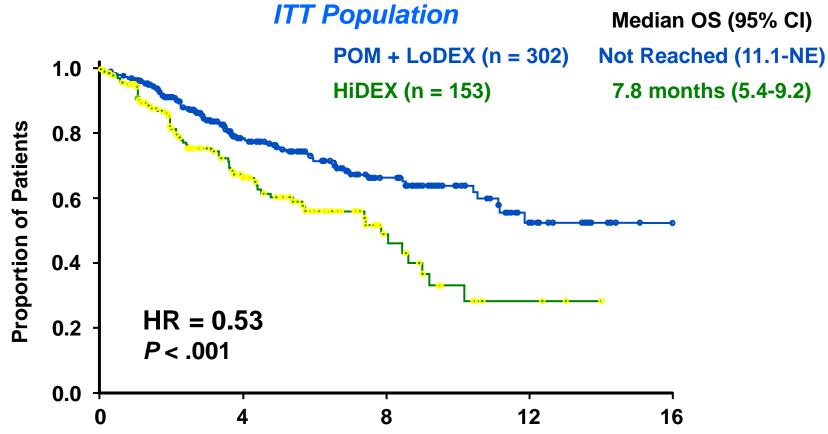
MM-003: Key Eligibility Criteria

- All pts had to be refractory to last therapy
- At least 2 prior therapies
 - ≥ 2 consecutive cycles of LEN and BORT (alone or in combination)
 - Adequate prior alkylator therapy (SCT or ≥ 6 cycles or PD following ≥ 2 cycles)
- All pts must have failed LEN and BORT
 - Pt progressed on or within 60 days
 - Pt with PR must have progressed within 6 months
 - Intolerant to BORT
- Refractory or relapsed and refractory disease
 - Primary refractory: never achieved > PD to any therapy
 - Relapsed and refractory: relapsed after having achieved ≥ SD for ≥ 2 cycles of Tx to at least one prior regimen and then developed PD ≤ 60 days of completing their last therapy



*As of final PFS analysis, Sept 7, 2012.

Dimopoulos Blood 2012, 120(21): LBA-6



MM-003: Progression-Free Survival ITT Population

MM-003: Overall Survival

29% of pts received POM after progression on HiDEX

NE, not estimable

MM-003: Ongoing Evaluation of Response ITT Population

Response, %	POM + LoDEX (n=302)	HiDEX (n=153)	P value
ORR (≥ PR)	21	3	< .001
VGPR	3	1	
≥MR	37	8	
≥ SD	81	60	
Median DOR*, m (95% CI)	10.1 (6.2 – 12.1)	NE	

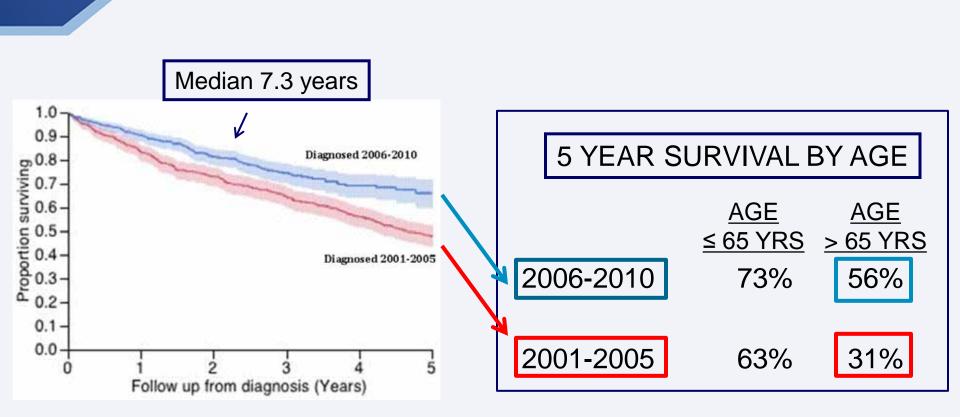
As of Nov 9, 2012

• PFS of ≥ MR in POM + LoDEX: 8.5 months

Response based on IMWG criteria, except for MR (based on EBMT criteria) * KM median, patients with ≥ PR only NE, not estimated due to too few responders

Pomalidomide - Practical

- Similar to lenalidomide with slightly less myelotoxicity and fatigue
- Dosing range 2-4mg
- Thromboprophylaxis necessary
- Feasible in combination



Factors in the selection of relapsed therapy

Patient Related Factors

- Age
- Performance Status
- Renal insufficiency
- Poor Marrow Reserve (previous myelosuppression)
- Neuropathy (pre-existing)
- Other comorbidities cardiac, diabetes
- Disease Related Factors
- Risk Status (high, intermediate, standard)
- Aggressivity of relapse (rapid M protein growth, organ damage, plasma cell leukemia)
- Depth and Duration of response to previous therapy
- **Treatment Related Factors**
- Refractoriness to previous therapies
- Single agent vs combination therapies
- Mode of administration (PO, SQ, IV)
- Cost
- Toxicity myelosuppression, neuropathy, thrombosis, GI tolerance
- Risk of Second Primary Malignancy

IMPACT OF NOVEL THERAPY 2012/2013

2012 ASH Abstract #3972 Kumar et al

Monoclonal Antibodies in MM

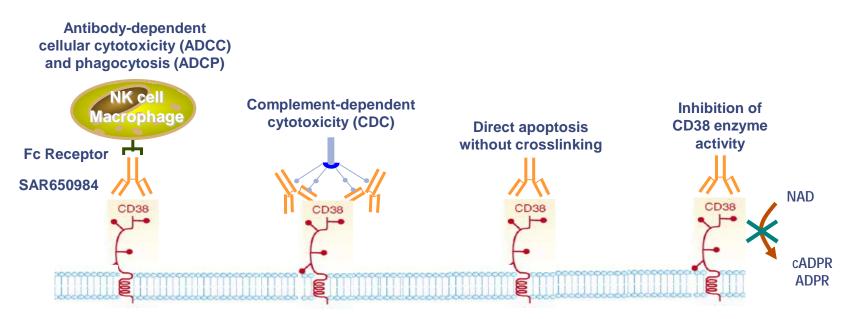
Target	mAb	Stage of development
Surface molecules		
CS1/SLAMF7	Elotuzumab	Phase 2/3
CD38	Daratumumab SAR650984 MOR202	Phase 1/2/3 Phase 1/2 Phase 1/2
CD74	Milatuzumab	Phase 1/2
CD40	Dacetuzumab	Phase 1
CD56	Lorvotuzumab mertansine	Phase 1
CD138	BT062	Phase 1
Signaling molecules		
IL-6	Siltuximab	Phase 3
RANKL	Denosumab	Phase 3
B cell activating factor (BAFF)	Tabalumab	Phase 2/3
VEGF	Bevacizumab	Phase 2
DKK1	BHQ880	Phase 2

Richardson et al. et al. IMW 2013 (Abstract P-214), poster presentation Plesner et al. ASH 2013 (Abstract 1987), poster presentation Martin et al. ASH 2013 (Abstract 284), oral presentation http://www.clinicaltrials.gov/ct2/show/NCT00421525 http://www.clinicaltrials.gov/ct2/show/NCT00079716

http://www.clinicaltrials.gov/ct2/show/NCT00346255 http://www.clinicaltrials.gov/ct2/show/NCT01001442 Wong et al. ASH 2013 (Abstract 505), oral presentation Hageman et al. Ann Pharmacother 2013;47:1069-74

Anti CD 38 Monoclonal Antibodies

- Most promising agents for myeloma (according to 80% vote at International Myeloma Working Group)
- 2 currently in later development Daratumumab and SAR 650984
- Both have significant single agent activity and can be combined
- Will this be the "rituximab" of Myeloma??


A Phase I trial of SAR650984, a CD38 monoclonal antibody, in relapsed or refractory multiple myeloma

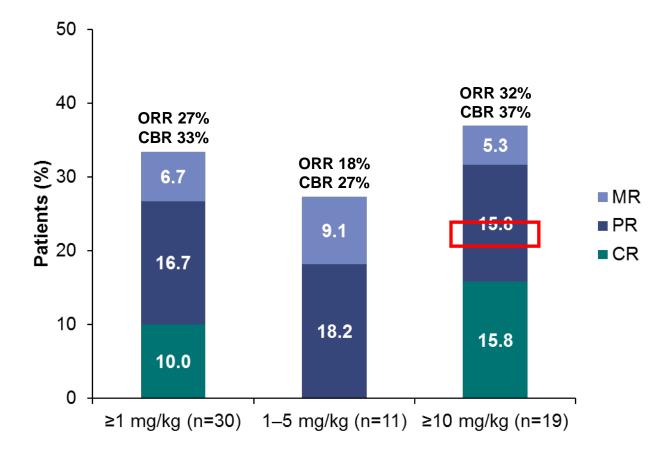
Joseph Mikhael,¹ Stephen Strickland,² Martha Glenn,³ Eric Charpentier,⁴ Karl Hsu,⁴ Thomas Martin⁵

¹Mayo Clinic, Scottsdale, AZ, USA; ²Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ³Huntsman Cancer Institute, Salt Lake City, UT, USA; ⁴Sanofi Oncology, Cambridge, MA, USA; ⁵University of California at San Francisco, San Francisco, CA, USA

Introduction to CD38 and SAR650984

- CD38 is a 45 kD type II transmembrane glycoprotein which functions as a receptor and an ectoenzyme
- Widely expressed in many hematologic malignancies including multiple myeloma, NHL, AML, and CLL¹⁻⁵
- SAR650984 is a humanized IgG1 monoclonal antibody that binds selectively to a unique epitope on the human CD38 receptor
 - Four potential modes of action:

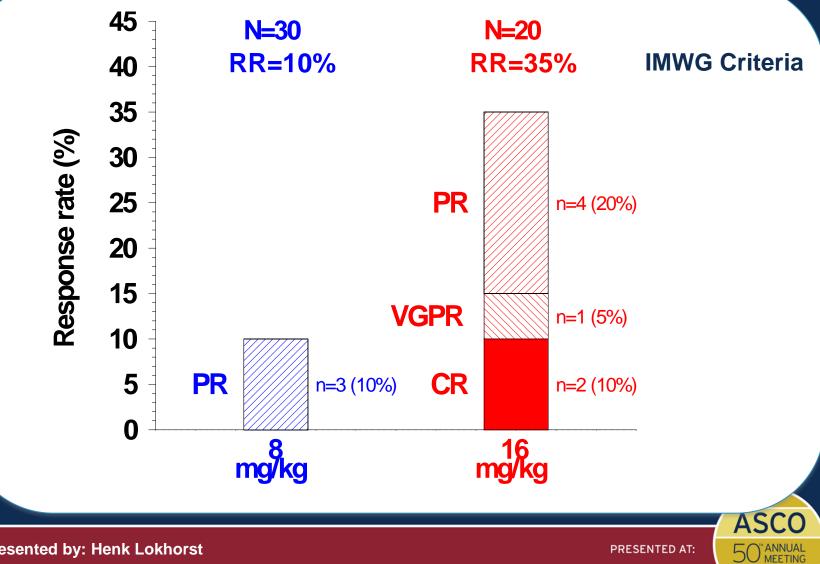
Lin, et al. Am J Clin Pathol 2004;121:482–8.
Angelopoulou, et al. Eur J Haematol 2002;68:12–21.
Schwonzen, et al. Br J Haematol 1993;83:232–9.
Keyhani, et al. Leukemia Res 1999;24:153–9.
Domingo-Domènech, et al. Haematologica 2002;87:1021–7.


31

Demographics

	SAR650984 dose level (mg/kg) and schedule						_		
	≤0.1 q2W	0.3 q2W	1 q2W	3 q2W	5 q2W	10 q2W	10 q1W	20 q2W	Overall
No. of patients	5	5	3	5	3	6	6	7	40
Median age, years (range)	65 (54–77)	62 (41–76)	61 (55–74)	65 (60–74)	64 (58–64)	65 (61–70)	65 (40–76)	68 (49–74)	65 (40–77)
Median time since diagnosis, years (range)	3.7 (2–8)	7.0 (3–12)	8.0 (7–9)	8.0 (3–14)	4.0 (4–10)	5.5 (2–9)	9.5 (4–16)	5.0 (4–8)	6.5 (2–16)
No. of prior thorapios	5.0 (3-9)	7.0 (3-12)	8.0 (7-9)	8.0 (3-14)	4.0 (4-10)	5.5 (2-9)	9.5 (4 16)	5.0 (4-8)	6.5 (2-16)
Bortezomib	5 (100)	5 (100)	3 (100)	5 (100)	3 (100)	6 (100)	6 (100)	7 (100)	40 (100)
Carfilzomib	0	0	0	3 (60)	1 (33)	4 (67)	5 (83)	4 (57)	17 (43)*
Lenalidomide	3 (60)	5 (100)	3 (100)	5 (100)	3 (100)	6 (100)	6 (100)	6 (86)	37 (93)
Pomalidomide	0	0	2 (67)	0	2 (67)	0	2 (33)	3 (43)	9 (23)*
Thalidomide	5 (100)	5 (100)	2 (67)	3 (60)	2 (67)	5 (83)	4 (67)	5 (71)	31 (78)

*66% of patients had received Carfilzomib and/or Pomalidomide


Response Summary*(dose cohorts ≥1 mg/kg)

*According to EBMT/IMWG criteria.

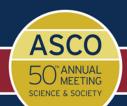
CBR, clinical benefit rate (at least MR); CR, complete response; MR, minimal response; ORR, objective response rate (at least PR); PR, partial response

DARA - Response

Presented by: Henk Lokhorst

PRESENTED AT:

SCIENCE & SOCIETY


DARA monotherapy: Conclusions

Efficacy

•Preliminary ORR (PR and better) is very promising in the 16 mg/kg cohort with 35% compared to 10% in the 8 mg/kg cohorts

- •Response is deeper in the 16 mg/kg cohort in part 2 compared to the 8 mg/kg cohort and the higher dose cohorts (4-24 mg/kg) from part 1
- •In patients who achieved a clinical response, the bone marrow plasma cells decreased to normal level

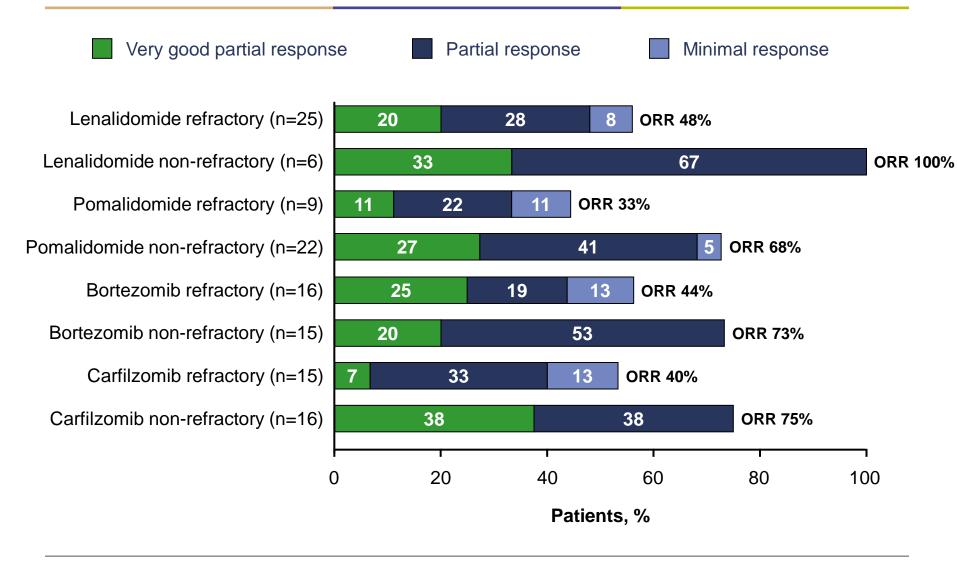
•16 mg/kg is the dose that should be chosen for further studies of daratumumab as monotherapy

PRESENTED AT:

A Phase Ib dose-escalation trial of SAR650984 (anti-CD38 mAb) in combination with lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: Response summary (IMWG criteria) (Martin et al, ASCO 2014)

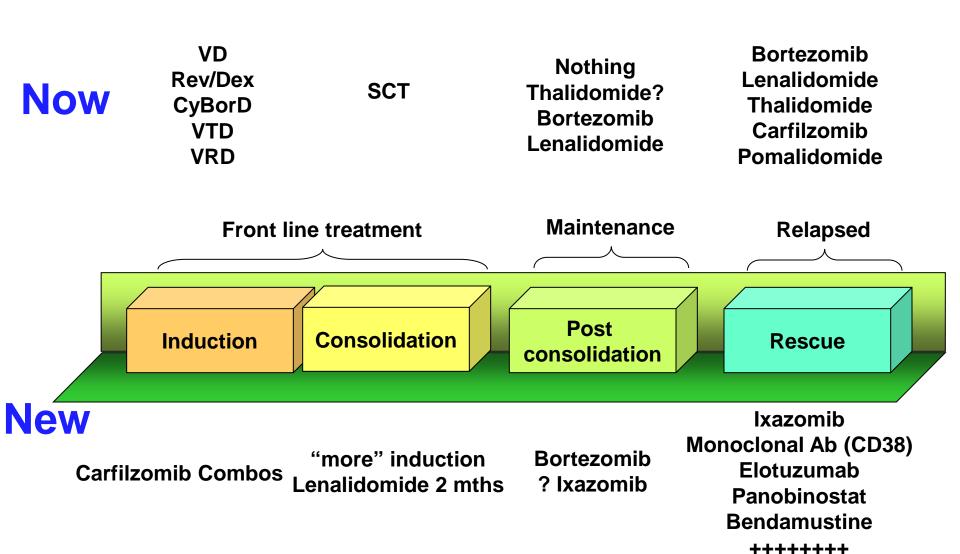
Number of patients (%)	All (n=31)		100 -		Minimal response Partial response Very good partial response			
Overall response rate Very good partial	18 (58) 7 (23)		80 -		ORR 67%	ORR 63% CBR 67%	ORR 58% CBR 65%	
response Partial response	11 (35)	is, %	60 -	ORR 25% CBR 50%		4%	6%	
Minimal response	2 (6)	Patients,				38%	•===	
Clinical benefit (MR or better)	20 (65)	₽.	40 -	25%	67%		35%	
Stable disease Progressive disease	3 (10)		20 -					
Not evaluable	7 (23) 1 (3)			25%		25%	23%	
			0 –	3	5	10	Overall	

SAR650984 dose level, mg/kg q2W


(n=24)

(n=31)

(n=3)


(n=4)

Response rate by prior anticancer treatment

Treatment sequence in Myeloma

More to Come!!

Classes of Agents in Development for Myeloma

- 1. Oral Proteasome Inhibitors ixazomib (MLN 9708), oprozomib
- 2. Monoclonal antibodies
 - a. SLAMF7 (Signaling Lymphocytic Activation Molecule F7) (formerly CS-1) elotuzumab
 - b. Anti CD38 daratumumab, SAR650984
 - c. Anti CD 138 indatuximab, ravatansine
- 3. KSP Inhibitors filanesib
- 4. *Histone Deacetylase Inhibitors* panobinostat, ACY-1215
- 5. Akt inhibitors afuresertib
- 6. BCL Family Inhibitors ABT-199
- 7. CDK inhibitors dinaciclib
- 8. Nuclear Transport CRM/XPO1 selinexor
- 9. *IAP antagonists* LCL161
- 10. *PIM kinase inhibitors* LGH447
- 11. Bromodomain and Extra-Terminal (BET) inhibitors- GSK525762
- 12. *Immune Therapies* programmed cell death protein 1 (pd1), programmed death-ligand 1 (pdl1)

What is in the Future of Myeloma? Joe the Prophet speaks...

- **1.** Less Transplant
- **2.** More Risk Stratification
- **3.** Longer Treatments
- **4.** More Combinations
- **5.** Monoclonal Antibodies! (esp CD38)
- **6.** More convenient regimens
- **7. MRD**
- 8. Quality of Life

La única sesión oficial de

2015 Highlights of ASH[°] 23-24 de abril de 2015 en América Latina

Hotel Las Américas Resort, Spa y Centro de Convenciones Cartagena, Colombia

www.hematology.org/Highlights

ASH Clinical Research Training Institute in Latin America to be held April 21-22 before the 2015 Highlights of ASH in Latin America.

Applications are due March 12, 2015. www.hematology.org/Global

A única sessão oficial do

23-24 de abril de 2015 na América Latina

Hotel Las Américas Resort, Spa e Centro de Convenções Cartagena, Colombia

www.hematology.org/Highlights

ASH Clinical Research Training Institute in Latin America to be held April 21-22 before the 2015 Highlights of ASH in Latin America.

Applications are due March 12, 2015. www.hematology.org/Global