



### Understanding the pathogenesis of T Cell Lymphomas: implications on future treatments

Advances in Malignant lymphomas: The case of extranodal and T-cell lymphomas

> Hospital del Salvador Santiago de Chile April 5-6, 2016

Giorgio Inghirami Department of Pathology and Laboratory Medicine Weill Cornell Medicine, New York, NY Center of Experimental Medicine and Research (CeRMS) University of Turin

### JOURNAL OF CLINICAL ONCOLOGY

#### ORIGINAL REPORT

### International Peripheral T-Cell and Natural Killer/T-Cell Lymphoma Study: Pathology Findings and Clinical Outcomes

International T-Cell Lymphoma Project

| Table 1. Major Lymphoma Subtypes by Geographic Region                                                                                                       |               |        |      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|------|--|--|--|
|                                                                                                                                                             | %             |        |      |  |  |  |
| Subtype                                                                                                                                                     | North America | Europe | Asia |  |  |  |
| PTCL-NOS                                                                                                                                                    | 34.4          | 34.3   | 22.4 |  |  |  |
| Angioimmunoblastic                                                                                                                                          | 16.0          | 28.7   | 17.9 |  |  |  |
| ALCL, ALK positive                                                                                                                                          | 16.0          | 6.4    | 3.2  |  |  |  |
| ALCL, ALK negative                                                                                                                                          | 7.8           | 9.4    | 2.6  |  |  |  |
| NKTCL                                                                                                                                                       | 5.1           | 4.3    | 22.4 |  |  |  |
| ATLL                                                                                                                                                        | 2.0           | 1.0    | 25.0 |  |  |  |
| Enteropathy-type                                                                                                                                            | 5.8           | 9.1    | 1.9  |  |  |  |
| Hepatosplenic                                                                                                                                               | 3.0           | 2.3    | 0.2  |  |  |  |
| Primary cutaneous ALCL                                                                                                                                      | 5.4           | 0.8    | 0.7  |  |  |  |
| Subcutaneous panniculitis-like                                                                                                                              | 1.3           | 0.5    | 1.3  |  |  |  |
| Unclassifiable T-cell                                                                                                                                       | 2.3           | 3.3    | 2.4  |  |  |  |
| Abbreviations: PTCL, peripheral T-cell lymphoma; NOS, not otherwise specified; ALCL, anaplastic large-cell lymphoma; NKTCL, natural killer/T-cell lymphoma. |               |        |      |  |  |  |

### **T-Cell Lymphomas in South America and Europe**

Table 2 - Histologic subtype distribution (%) according to reviewed histology of 737 cases registered in the T-cell project by geographic region

|                                              | Overall | Europe | USA | South<br>America | Middle/<br>Far East |
|----------------------------------------------|---------|--------|-----|------------------|---------------------|
| PTCL-NOS                                     | 38      | 40     | 42  | 42               | 26                  |
| AITL                                         | 17      | 20     | 21  | 8                | 15                  |
| ALCL, ALK <sup>-</sup>                       | 13      | 14     | 9   | 23               | 6                   |
| ALCL, ALK <sup>+</sup>                       | 7       | 6      | 8   | 8                | 4                   |
| NK/T nasal, nasal type,<br>lymphoma/leukemia | 13      | 6      | 9   | 13               | 31                  |
| Other histologies                            | 12      | 14     | 11  | 6                | 18                  |

PTCL: Peripheral T-cell lymphomas; NOS: Not otherwise specified; AITL: Angioimmunoblastic T-cell lymphoma; ALCL: Anaplastic large cell lymphomas; ALK: Anaplastic lymphoma kinase; NK: Natural killer

Belli M et al: Rev Bras Hematol Hemoter. 2012

# **Relative frequencies of T-cell lymphomas**



# Overall Survival of patients with common Peripheral T-cell Lymphoma subtypes



Copyright © American Society of Clinical Oncology

(Modified from Armitage et al. JCO 2008)





Epigenetic modifications facilitate flexible coexpression of transcription factors permitting flexible responses to offending pathogens



# The T-cell phenotypes are regulated by a balanced equilibrium of competing transcription factors



### LYMPHOID NEOPLASIA

(Blood. 2014;124(9):1460-1472)

# Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia

Mark J. Kiel,<sup>1</sup> Thirunavukkarasu Velusamy,<sup>1</sup> Delphine Rolland,<sup>1</sup> Anagh A. Sahasrabuddhe,<sup>1</sup> Fuzon Chung,<sup>1</sup> Nathanael G. Bailey,<sup>1</sup> Alexandra Schrader,<sup>2</sup> Bo Li,<sup>3</sup> Jun Z. Li,<sup>3,4</sup> Ayse B. Ozel,<sup>4</sup> Bryan L. Betz,<sup>1</sup> Roberto N. Miranda,<sup>5</sup> L. Jeffrey Medeiros,<sup>5</sup> Lili Zhao,<sup>6</sup> Marco Herling,<sup>2</sup> Megan S. Lim,<sup>1</sup> and Kojo S. J. Elenitoba-Johnson<sup>1</sup>

### Genomic landscape of cutaneous T cell lymphoma

Jaehyuk Choi, Gerald Goh, Trent Walradt, Bok S Hong, Christopher G Bunick, Kan Chen, Robert D Bjornson, Yaakov Maman, Tiffany Wang, Jesse Tordoff, Kacie Carlson, John D Overton, Kristina J Liu, Julia M Lewis, Lesley Devine, Lisa Barbarotta, Francine M Foss, Antonio Subtil, Eric C Vonderheid, Richard L Edelson, David G Schatz, Titus J Boggon, Michael Girardi & Richard P Lifton Nature Genetics 47, 1011–1019 (2015)

# The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome

Ana Carolina da Silva Almeida, Francesco Abate, Hossein Khiabanian, Estela Martinez-Escala,Joan Guitart, Cornelis P Tensen, Maarten H Vermeer, Raul Rabadan, Adolfo Ferrando & TeresaPalomeroNature Genetics 47, 1465–1470 (2015)

# **PRDM1/BLIMP1** is commonly inactivated in anaplastic large T-cell lymphoma

Michela Boi,<sup>1</sup> Andrea Rinaldi,<sup>1</sup> Ivo Kwee,<sup>1-3</sup> Paola Bonetti,<sup>1</sup> Maria Todaro,<sup>4</sup> Fabrizio Tabbò,<sup>4</sup> Roberto Piva,<sup>4,5</sup> Paola M. V. Rancoita,<sup>1,2</sup> András Matolcsy,<sup>6</sup> Botond Timar,<sup>6</sup> Thomas Tousseyn,<sup>7</sup> Socorro Maria Rodríguez-Pinilla,<sup>8</sup> Miguel A. Piris,<sup>8</sup> Sílvia Beà,<sup>9</sup> Elias Campo,<sup>9</sup> Govind Bhagat,<sup>10</sup> Steven H. Swerdlow,<sup>11</sup> Andreas Rosenwald,<sup>12</sup> Maurilio Ponzoni,<sup>13</sup> Ken H. Young,<sup>14</sup> Pier Paolo Piccaluga,<sup>15</sup> Reinhard Dummer,<sup>16</sup> Stefano Pileri,<sup>15</sup> Emanuele Zucca,<sup>17</sup> Giorgio Inghirami,<sup>4,5</sup> and Francesco Bertoni<sup>1,17</sup>

### **Key Points**

- The commonest lesions in anaplastic large cell lymphomas are losses at 17p13 and at 6q21, concomitant in up to onequarter of the cases.
- PRDM1 (BLIMP1) gene (6q21) is inactivated by multiple mechanisms and acts as a tumor suppressor gene in anaplastic large B-cell lymphoma.



# Common fusion proteins of ALK+ ALCL



# Many T-cell lymphomas have a unique genotype and recurrent lesions



### ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes

Edgardo R. Parrilla Castellar,<sup>1</sup> Elaine S. Jaffe,<sup>2</sup> Jonathan W. Said,<sup>3</sup> Steven H. Swerdlow,<sup>4</sup> Rhett P. Ketterling,<sup>1</sup> Ryan A. Knudson,<sup>1</sup> Jagmohan S. Sidhu,<sup>5</sup> Eric D. Hsi,<sup>6</sup> Shridevi Karikehalli,<sup>7</sup> Liuyan Jiang,<sup>8</sup> George Vasmatzis,<sup>9</sup> Sarah E. Gibson,<sup>4</sup> Sarah Ondrejka,<sup>6</sup> Alina Nicolae,<sup>2</sup> Karen L. Grogg,<sup>1</sup> Cristine Allmer,<sup>10</sup> Kay M. Ristow,<sup>11</sup> Wyndham H. Wilson,<sup>12</sup> William R. Macon,<sup>1</sup> Mark E. Law,<sup>1</sup> James R. Cerhan,<sup>10</sup> Thomas M. Habermann,<sup>11</sup> Stephen M. Ansell,<sup>11</sup> Ahmet Dogan,<sup>1</sup> Matthew J. Maurer,<sup>10</sup> and Andrew L. Feldman<sup>1</sup>

### **Key Points**

- ALK-negative ALCLs have chromosomal rearrangements of *DUSP22* or *TP63* in 30% and 8% of cases, respectively.
- DUSP22-rearranged cases have favorable outcomes similar to ALK-positive ALCLs, whereas other genetic subtypes have inferior outcomes.

**DUSP22-IRF4** locus





# TCR signaling and the host contribution in the pathogenesis of T-cell neoplasms

- Pre-TCR expression cooperates and T cell receptor/antigen stimulation have been proven to foster T cell transformation in mice carrying the TEL-JAK2 fusion or STAT5, respectively (dos Santos 2007; Kelly 2003)
- Super-antigen mediated activation has been suggested to play a pathogenetic role in cutaneous T-cell lymphoma (Vb2:Jackow 1997)
- Gluten exposure leads to inflammation and T cell expansion which proceed EATL
- T-NHL display a transcriptome that is consistent with a TCR signaling, particularly in low-grade entities (Geissinger 2010)

# The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma





Nature Reviews | Immunology

Pechloff K. et al J. Exp. Med. Vol. 207 No. 5 1031-1044

## NPM-ALK oncogenic tyrosine kinase controls T cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells



Ambrogio C et al. Cancer Res. 2009 November 15; 69: 8611-8619

# NPM-ALK signaling pathways



# STAT3 silencing induces first cell cycle arrest followed by cell death

TS TTA

| sh/ | \5M |   |    | - ) | sh  | STA | T3 |    |    |    |      |       |
|-----|-----|---|----|-----|-----|-----|----|----|----|----|------|-------|
| 0   | 96  | 0 | 12 | 24  | 36  | 48  | 60 | 72 | 84 | 96 | hrs  | DOX   |
| -   | -   | _ | -  | -   | _   | -   | -  |    | -  |    | STA  | Т3    |
| 25  | ÷   |   |    |     | -   | -   | -  | -  | -  | -  | GFF  | 0     |
| _   | _   | - | -  | _   | _   | _   | _  | _  | -  | -  | NPN  | 1-ALK |
| ~   | ÷   | à | ÷  | • • | • • |     | 77 |    | ÷  |    | Sur  | vivin |
| _   |     | _ | _  | _   | _   | _   | _  | _  | _  | _  | α-tu | bulin |







*Piva et al. JC0, 2010* 





# STAT3 regulates the expression of CD30



# JAK1 and STAT3 are frequently mutated in systemic and cutaneous ALCL



# JAK1 and/or STAT3 mutations are frequently found in ALK- ALCL









# pSTAT3 expression defines a subset of ALK-ALCL

### WT JAK1/STAT3



### G1097D JAK1



### A662V STAT3



### Y640F STAT3



### ALCL ALK+ vs Normal



### ALCL ALK- vs Normal



# How is frequently deregulated the JAK/STAT pathway in T-cell lymphomas?

| JAK STAT signaling pathway in T-cell lymphoproliferative disorders |                  |                                             |  |  |  |  |
|--------------------------------------------------------------------|------------------|---------------------------------------------|--|--|--|--|
| Gene                                                               | Neoplasms        | Reference                                   |  |  |  |  |
| JAK1                                                               | T-ALL            | Porcu, 2009; Mullighan, 2009                |  |  |  |  |
| JAK1                                                               | CTCL             | Perez, 2014                                 |  |  |  |  |
| JAK1                                                               | ALK- ALCL        | Crescenzo, 2015                             |  |  |  |  |
| JAK1                                                               | T-PLL            | Bellenager 2014                             |  |  |  |  |
| JAK1                                                               | ATLL             | Kataoka 2015                                |  |  |  |  |
| JAK2                                                               | T-ALL            | Mullighan, 2009; Roncero, 2015              |  |  |  |  |
| JAK2 fusions                                                       | T-ALL            | Onnebo, 2012                                |  |  |  |  |
| ЈАКЗ                                                               | CTCL             | Perez, 2014; McGirt 2015                    |  |  |  |  |
| JAK3                                                               | T-ALL            | Mullighan, 2009;Bains, 2012; Kawashima 2015 |  |  |  |  |
| JAK3                                                               | NKTCL            | Коо, 2012                                   |  |  |  |  |
| JAK3                                                               | T-PLL            | Bellenager 2014                             |  |  |  |  |
| JAK3                                                               | ATLL             | Kataoka 2015                                |  |  |  |  |
| STAT3                                                              | Gamma-delta PTCL | Kucuk 2015                                  |  |  |  |  |
| STAT3                                                              | NKTCL            | Koskela, 2012; Ohgami 2013                  |  |  |  |  |
| STAT3                                                              | ALK- ALCL        | Crescenzo, 2015                             |  |  |  |  |
| STAT3                                                              | AITL             | Odejide, 2014                               |  |  |  |  |
| STAT3                                                              | ATLL             | Kataoka 2015                                |  |  |  |  |
| STAT5B                                                             | Gamma-delta PTCL | Kucuk 2015                                  |  |  |  |  |
| STAT5B                                                             | CTCL and Sezary  | Perez, 2014                                 |  |  |  |  |
| PTPRC                                                              | T-ALL            | Porcu, 2012                                 |  |  |  |  |
| PTPN2                                                              | PTCL-NOS         | Kleppe, 2011                                |  |  |  |  |
| PTPN2                                                              | T-ALL            | Tartaglia 2004 ; Kleppe 2010                |  |  |  |  |

## ALK-ALCL display novel recurrent TK translocations

Α















#### 3. NCOR2/ROS1

В

С



2. NFkB2/TYK2

#### 4. PABPC4/TYK2



# ALK- ALCL bear novel TK translocations



# **ALCL** Subtypes



**Breast implant ALCL** 





# ALCL models

**Additional tumorigenic events** 

### 1<sup>th</sup> initial tumorigenic events

### Blimp1 ko ALK translocation TP53/TP63 **TYK2/ROS** fusions MYC deregulation Activating JAK and STAT mutations ERBB4 (ATI) DUSP22 X and Y ??? Cytotoxic T lymphocytes ? Cytotoxic ALCL Leukemic ALCL or Mature CD4 or CD8 T lymphocytes?

## Clonal evolution: sequential genomics acquisition



### Clonal evolution: sequential genomics acquisition



# The forced expression of mut STAT3 favors Th17 differentiation of Naive T cells



# ALCL display a skewed expression of T-cell master regulators



## **Predicting clonal evolution CD30+ LPD**











# The Institutional Biobank at WCMC





## 8.9 Example: HemPath Biopsy Specimen Collection



### New trends in biobanking



Data update at 6/30/2015



# Experimental Therapeutics Program (ETP) @ WCMC



# Why we need reproducible lymphoma PDX?

- Although many lymphoid cell lines exist, various lymphoma subtypes lack authentic in vitro models i.e. CLL, HCL, FCCL, PTCL-NOS, etc.
- Spontaneous lymphoma models are rare and current transgenic mice are driven by constitutive oncogenes and lack the complex genomic heterogeneity of human cancers.
- GEM and/or xenografts partly predict the clinic responses seen in clinical settings.
- No representative refractory lymphoma models exist.
- Fully humanized models are needed, i.e. immunotherapies, host-lymphoma interactions.
- Regardless of a considerably progress the over survival of lymphoma patients remains modest.

# How critical are the implantation routes in lymphoma PDX grafting?



## Temporal propagation of PDX lymphomas



ALCL-1

# Graft versus host represents a fatal hurdle in the generation of PDX lymphoma.



### Do PDTX fully recapitulate their corresponding primary lesions



















# **PDX Flow data: Discovery and therapeutics**





# SNP array identify analogous patient genomic defects in primary and corresponding PDTX



### Genomic and biological characterization of cALCL PDTX



### Acknowledgements

### WCMC

Ramona Crescenzo Maria Todaro Fabrizio Tabbo' Marcello Gaudiano Joseph Casano Valentina Fragliasso Xujun Wang

#### **Olivier Elemento**

Rohan Bareja Akanksha Verma Hend Pan Ken Eng

### **Jackson Laboratory**

Lenny Shultz





### **Columbia University**

Raul Rabadan Francesco Abate Sakellarios Zairis

IOSI Francesco Bertoni Michela Boi Ivo Kwee

San Raffaele Hospital Scientific Institute Maurilio Ponzoni Andres Ferreri

### **University of Torino**

Roberto Chiarle Roberto Piva Rodolfo Marchiorlatti Katia Messana Indira Landra Filomena Di giacomo Domenico Novero Sivia Deaglio

The European T-cell Lymphoma Study Group

Genetics-driven targeted management of lymphoid malignancies

AIRC 5x1000

Associazione Italiana per la Ricerca sul Cancro Con la ricerca, contro il cancro. someday is today