Estudio de proteínas de fusión por citometria de flujo

Centro de Investigación del Cáncer, Universidad y Hospital Universitario de Salamanca, Salamanca

XVIII Congreso de la Sociedad Chilena de Hematología, La Serena, 4 - 6 de octubre de 2012

Diagnostics in hematological malignancies

1. Making the diagnosis

Normal \leftrightarrow reactive/regenerating \leftrightarrow malignant

Annually > 300,000 new patients with a hematological malignancy in developed countries

2. Classification of hematopoietic malignancies

- relation with prognosis
- relevance of risk-group definition in treatment protocols
- Based on differentiation characteristics and particularly on chromosome aberrations, resulting in fusion gene transcripts or aberrantly (over) expressed genes

3. Evaluation of treatment effectiveness

Detection of minimal residual disease (MRD):

MRD-based risk-group stratification (treatment reduction or treatment intensification) Annually > 400,000 follow-up samples in leukemia patients (ALL, AML, CML)

Event-free survival in childhood ALL according to chromosome aberrations

T. Szczepanski, et al. Lancet Oncology, In Press.

Chromosome aberrations and fusion genes in acute leukemias

Chromosome	Fusion	Relative frequency per type of acute leukemia				
aberration	genes	Precursor-B-ALL		AML		
		children	adults	children	adults	adults
					<60 y	>60y
+/1.10)(~22.012)		E 00/	2 /0/			
i(1,19)(qz3,p13)	EZA-PDX I	5-0%	3-4%	-	-	-
t(4;11)(q21;q23)	MLL-AF4	3-5% ^a	3-4%	<1%	<1%	<1%
t(9;22)(q34;q11)	<i>BCR-ABL</i> p190	3-5%	15-30%	<1%	<1%	<1%
t(9;22)(q34;q11)	BCR-ABL p210	1-2%	10-15%	<1%	<1%	<1%
t(12;21)(p13;q22)	TEL-AML1	25-30%	<2%	-	-	-
t(8;21)(q22;q22)	AML1-ETO	-	-	10-14%	6-8%	2-3%
t(15;17)(q22;q21)	PML-RARA	-	-	8-10% ^b	5-15% ^b	2-6% ^b
inv(16)(p13;q22)	CBFB-MYH11	-	-	5-7%	5-6%	3-4%
	TOTAL	40-45%	40-45%	25-30%	20-25%	10-12%

^a In infant ALL, the frequency of t(4;11) can be as high as 70%.

^b In southern European regions (ES, FR, and IT) the frequency of t(15;17) with *PML*-*RARA* is essentially higher than in northern European regions.

Relative frequency of well-defined genetic aberrations in ALL according to age groups

T. Szczepanski, et al. Lancet Oncology, 2010; 11:880-889

AL: GENOTYPIC-PHENOTYPIC ASSOCIATIONS

Diagnosis	Genetic lesion	Aberrant immunophenotype
BCP-ALL	t(9;22)*	CD34 ^{hi} ,CD10+,CD38 ^{lo} ,CD13 ^{lo}
	t(12;21)	CD34 ^{het} ,CD10+,CD20 ⁻ ,CD13 ^{lo}
	11q23	CD34+,CD10 ⁻ ,7.1+,CD15+
AML	t(15;17)	CD34-/+,CD15-/lo,CD2-/lo,CD13 ^{het}
	lnv(16)	MPO ^{hi} ,CD2 ^{-/lo}
	t(8;21)	CD19+,CD56+
	11q23	CD56+,7.1-/+,CD19-/lo,CD2-/+

Ortuño F. Orfao A. Cvtometrv B. 2004

Current detection of genetic aberrancies including overexpressed oncogenes and fusion genes

Advantages of molecular techniques:

- Generally well-established;
- Cytogenetics screens total genome for visible structural aberrations;
- FISH: screening of all relevant breakpoints of targeted genes;
- PCR: most variant breakpoints are identified (size differences);
- RQ-PCR: highly sensitive and reproducible: Useful for MRD diagnostics
- Microarray, CGH, SNP: promising, but to be established !

Current detection of genetic aberrancies

including overexpressed oncogenes and fusion genes

Cytogenetics

PCR

RQ-PCR

Disadvantages of molecular techniques:

- labor intensive;
- require specialized laboratories;
- time consuming (2-3 days, up to a -week)

Dept. of Immunology, Erasmus MC, Rotterdam

Bead-based flow cytometric assay for detection of fusion proteins

Breakpoint regions in t(9;22)(q34;q11) with BCR and ABL genes

Multiple variants of *BCR-ABL* transcripts caused by multiple different *BCR* breakpoint regions

EUro

OW

Design of anti-BCR antibodies for fusion protein beads

Cytometric Bead-array platform for immunobeads: detection of BCR-ABL t(9;22) fusion protein

Catching antibody: anti-ABL Bead: BD-Flex bead (A7) Detection antibody: anti-BCR (biotinylated)

BCR-ABL CBA for precursor B-ALL (diagnosis)

- ____ same sample tested in 2 separate experiments
- ★ patient with mutation close to a ABL-binding site

Only frozen samples tested

Loss of BCR-ABL signal in the presence of mature myeloid cells, e.g.WBC

ow

Euro

Degradation of BCR-ABL (and other proteins) by protease activity

Blocking of protease activity via protease inhibitors

Results of the BCR-ABL RUO testing by the EuroFlow laboratories

F

Stability fo BCR-ABL fusion proteins influence of temperature and transportation-processing time

Sensitivity of the BCR-ABL RUO immunobead assay

Relative frequency of well-defined genetic aberrations in ALL according to age groups

T. Szczepanski, et al. Lancet Oncology, 2010; 11:880-889

Ē

Flow cytometric MLL-AF4 immunobead assay

Ē

Flow cytometric TEL-AML1 immunobead assay

Chromosome aberrations and fusion genes in acute leukemias

Chromosome	Fusion	Relative frequency per type of acute leukemia				
aberration	genes	Precursor-B-ALL		AML		
		children	adults	children	adults	adults
					<60 y	>60y
+/1.10)(a22.012)		E 00/	2 /0/			
i(1,19)(qz3,p13)	EZA-PDA I	5-0%	3-470	-	-	-
t(4;11)(q21;q23)	MLL-AF4	3-5% ^a	3-4%	<1%	<1%	<1%
t(9;22)(q34;q11)	<i>BCR-ABL</i> p190	3-5%	15-30%	<1%	<1%	<1%
t(9;22)(q34;q11)	BCR-ABL p210	1-2%	10-15%	<1%	<1%	<1%
t(12;21)(p13;q22)	TEL-AML1	25-30%	<2%	-	-	-
t(8;21)(q22;q22)	AML1-ETO	-	-	10-14%	6-8%	2-3%
t(15;17)(q22;q21)	PML-RARA	-	-	8-10% ^b	5-15% ^b	2-6% ^b
inv(16)(p13;q22)	CBFB-MYH11	-	-	5-7%	5-6%	3-4%
	TOTAL	40-45%	40-45%	25-30%	20-25%	10-12%

^a In infant ALL, the frequency of t(4;11) can be as high as 70%.

^b In southern European regions (ES, FR, and IT) the frequency of t(15;17) with *PML*-*RARA* is essentially higher than in northern European regions.

SIMULTANEOUS DETECTION OF BCR-ABL & E2A-PBX FUSION PROTEINS

WHO CLASSIFICATION OF AML

AML with recurrent genetic abnormalities

- AML with t(8;21)(q22;q22); RUNX1-RUNX1T1
- AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11
- APL with t(15;17)(q22;q12); PML-RARA
- AML with t(9;11)(p22;q23); MLLT3-MLL
- AML with t(6;9)(p23;q34); DEK-NUP214
- AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1
- AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1
- AML with mutated NPM1
- AML with mutated CEBPA

AML with myelodysplasia-related changes AML NOS Therapy-related myeloid neoplasms Myeloid sarcoma Myeloid proliferations related to Down syndrome Blastic plasmacytoid dendritic cell neoplasm

Breakpoint regions in t(15;17)(q24;q21) with PML and RARA genes

Dekking et al, Leukemia, 2012

Variants of *PML-RARA* transcripts caused by different *PML* breakpoint regions

Dekking et al, Leukemia, 2012

Bead-based flow cytometric assay for detection of fusion proteins

Dept. of Immunology, Erasmus MC, Rotterdam

Design of anti-PML antibodies for fusion protein beads

Flow cytometric PML-RARA immunobead assay

Results of PML-RARA fusion protein detection using the immunobead assay

Dekking et al, Leukemia, 2012

Level of PML-RARA fusion protein expression in APL versus time lapse in sample processing

Euro

Dekking et al, Leukemia, 2012

At this moment the technical developments for 7 welldefined fusion proteins have (virtually) been completed:

Advantages of the immunobead system vs classical molecular techniques for fusion gene detection:

- Easy and reliable technique for fusion protein detection
- Independent of breakpoint position in the involved genes
- Multiplex possibilities by use of differential labeling of beads
- Fast technique: provides results within several hours
- No need for special laboratory facilities (only routine flow cytometer)
- Can be run in parallel with standard immunophenotyping (saves technician time!)
- The danger of protease activity requires integrity checking via an ubiquitous (protease sensitive) "household protein"

Conclusion: The immunobead technique can contribute to fast and easy diagnosis and classification of leukemias & other malignancies. If sufficient sensitivity is reached, MRD diagnostics becomes possible as well.

Examples of malignancies with chromosome aberrations that result in fusion proteins

Malignancy	Chromosome aberration	Fusion protein
Chronic myeloid leukemia	t(9;22)(q34;q11)	BCR-ABL
Lymphoma	t(2;5)(p23;q35)	NPM-ALK
Prostate cancer	t(21;21)(q22.3;q22.2)	TMPRSS2-ERG
Ewing sarcoma	t(11;22)(q24;q12)	EWSR1-FLI1
Papillary renal cell carcinoma	t(X;1)(p11;q23)	PRCC-TFE3
Follicular thyroid carcinoma	t(2;3)(q13;p25)	PAX8-PPARG
Fibromyxoid soft tissue sarcoma	t(7;16)(q33;p11)	FUS-CREB3L2
Endometrial stromal carcinoma	t(7;17)(p15;q11)	JAZF1-SUZ12
Soft tissue chondrosarcoma	t(9;22)(q31;q12)	EWSR1-NR4A3
Desmoplastic small round cell tumor	t(11;22)(p13;q12)	EWSR1-WT1
Poorly differentiated carcinoma affecting midline structures	t(15;19)(q14;p13)	BRD4-NUT

₽

New developments in medicine induce extensive patient monitoring

Changes in diagnostic strategies

- Many new therapeutics are being developed, particularly small molecules (e.g. TKI) and humanized antibodies.
- The vast majority of the new therapeutics block or manipulate specific targets. This leads to disease control with significant increase of QOF (not true cure).
- Prediction of therapy resistance will become increasingly important .

CONSEQUENCE: Monitoring, monitoring, monitoring!

■

Fluorescence resonance energy transfer (FRET)

Van Dongen JJM, van der Velden VHJ, Orfao A, European Patent, 2007

FRET-mediated detection of A-B fusion proteins

Van Dongen JJM, van der Velden VHJ, Orfao A, European Patent, 2007

Flow cytometric detection of intracellular fusion proteins

If successful:

- Intracellular staining of fusion proteins allow analysis at the single cell level;
- Quantitative detection of fusion proteins at the single cell level;
- Easy and fast detection of fusion proteins in routine multicolor flow cytometry: Improved possibilities for sensitive MRD diagnostics (<10e4);
- Possibilities for early detection of mutation-induced therapy resistance, e.g. TKI resistance in CML
- Possibilities for studying minor (pre)leukemic cell populations.

FRET mediated detection of intracellular fusion proteins Usage of PNA oligonucleotides for close and stable linkage

FRET fluorochromes linked to PNA molecules: oligonucleotide C links oligonucleotides A and B so that the FRET fluorochromes act as a tandem dye

Van Dongen JJM, van der Velden VHJ, Orfao A, European Patent, 2007

Detection of intracellular fusion proteins by FRET: PNA oligonucleotides for close & stable linkage

FRET DETECTION OF IgM/K PROTEIN COMPLEXES ON THE B-CELL SURFACE MEMBRANE USING THE PNA SYSTEM

EuroFlow

EuroFlow consortium aims at innovation in flow cytometry

THANKS TO

The USAL Team